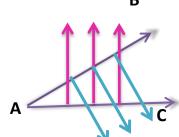
الزوايا (The Angles)

تعريف :- إذا كان $\stackrel{\longleftarrow}{AC}$ و $\stackrel{\longleftarrow}{AC}$ شعاعين مختلفين لا يقعان على مستقيم واحد ولهما نقطة بداية مشتركة $\stackrel{\longleftarrow}{A}$ فأن إتحاد هذين الشعاعين مع النقطة $\stackrel{\longleftarrow}{A}$ تسمى زاوية .

النقطة A تسمى رأس الزاوية و نرمز للزاوية بالرمز BAC> أو A > 0 ، الشعاعين A = 0 مثلان ضلعا الزاوية.

 $C' \in \overrightarrow{AC}$ ، $B' \in \overrightarrow{AB}$ استقامة واحدة وكانت \overrightarrow{AC} , \overrightarrow{AB} شعاعين ليس على استقامة واحدة وكانت \overrightarrow{AC} ، \overrightarrow{AB} فأن $\overrightarrow{AC} = \langle B'AC' = \langle BAC' \rangle$

تعریف: داخل الزاویة BAC > هو تقاطع جهة الشعاع \overrightarrow{AC} التي تحوي النقطة B وجهة الشعاع \overrightarrow{AB} التي تحوي النقطة C.



خارج الزاوية هو مجموعة كل النقاط التي لا تقع في داخل الزاوية ولا على حدود الزاوية.

مبرهنة (**):

لية. **واج**د

١ ـ يوجد للزاوية رأس واحد فقط.
 ٢ ـ داخل الزاوية هو مجموعة غير خالية.
 ٣ ـ داخل الزاوية هو مجموعة محدبة.

مبرهنة (33) : إذا كانت D نقطة في داخل BAC> فان كل نقطة على الشعاع \overrightarrow{AD} تكون داخلية للزاوية BAC> (BAC>) .

البرهان: - نفرض X € AD

- · · · D نقطة داخلية للزاوية D · · · (من الفرض)
- AC التي تحوي C وتقع على جهة الشعاع AB التي تحوي C وتقع على جهة الشعاع AC

من مبر هنة \overrightarrow{AB} جميع نقاط الشعاع \overrightarrow{AD} تقع على جهة واحدة من \overrightarrow{AB} ومن ضمنها النقطتين X

 \overrightarrow{AB} تقع على جهة واحدة من الشعاع C , D \cdots

 \overrightarrow{AB} د. مبر هنة (3، 27) تقع على جهة واحدة من الشعاع C , X

C تقع على جهة الشعاع \overrightarrow{AB} التي تحوي X

 \overline{AC} وبنفس الطريقة نبر هن أن النقطة \overline{X} تقع على جهة واحدة من الشعاع

∴ x تقع داخل الزاوية AC ⊳

 \overrightarrow{AD} تكون داخلية للزاوية \overrightarrow{AD} كل نقطة على الشعاع \overrightarrow{AD} تكون داخلية للزاوية

مبرهنة (34):- في الزاوية BAC > 1 إذا كانت P,Q نقطتين مختلفتين واقعتين على الضلعين AB > 1 وقط إذا AC > 1 على التوالي فأن كل نقطة R على الخط R على الخط R على التوالي فأن كل نقطة R على الخط R على الإراوية R على الورادية R على الإراوية R الإراوية R على الإراوية R على الإراوية R على الإراوية R الإراوية R على الإرا

مبرهنة \overrightarrow{AD} :- إذا كانت \overrightarrow{D} نقطة داخلية للزاوية \overrightarrow{BAC} هأن الشعاع \overrightarrow{AD} يقطع قطعة المستقيم \overrightarrow{BC} .

تعريف \square : - في الزاوية \square BAC » يقال أن الشعاع \square يقع بين الشعاعين \square و \square إذا وفقط إذا كان الشعاع \square داخل الزاوية \square BAC »

D', C', B' مبرهنة (36):- الشعاع \overline{AD} يقع بين الشعاعين \overline{AD} بذا وفقط إذا وجدت نقاط \overline{AD} يقع بين الشعاعين \overline{AD} بكر \overline{AD} على التوالي بحيث \overline{AD} بكر \overline{AD} .

البرهان: -

نفرض إن \overrightarrow{AD} يقع بين \overrightarrow{AD} و \overrightarrow{AC} عند اخل الزاوية \overrightarrow{AD} هند نفرض إن \overrightarrow{AD} يقع بين \overrightarrow{AD} التعريف \overrightarrow{AD} التعري

 $C^{'} \in \overrightarrow{AC}$ و $B^{'} \in \overrightarrow{AB}$ و رمن بديهية (9) توجد نقطة مثل $B^{'} \in \overrightarrow{AB}$

(32 مبرهنة (32 مبرهنة) ≼ BAC = ∢ B'AC' ←

→ AD داخل الزاوية 'B'AC' داخل الزاوية (تعريف //)

(مبر هنة 35) $\overline{B'C'}$ في نقطة مثل $\overline{D'}$ في نقطة مثل \overline{AD}

(مبر هنة 34) [B'D'C'] ←

===>

. [B'D'C'] بحيث D' D' AD, C' AC, B' AB نفرض إن

(34 مبر هنة D' نقطة داخلية للزاوية D' برهنة D' برهنة D'

ن کے کا نقاط الشعاع \overrightarrow{AD} تقع داخل الزاویة \overrightarrow{AD} کل نقاط الشعاع \overrightarrow{AD} نقع داخل الزاویة \overrightarrow{AD} نقع داخل الزاویة \overrightarrow{AD} نقط الشعاع \overrightarrow{AD} نقط \overrightarrow{AD} نقط الشعاع \overrightarrow{AD} نقط \overrightarrow

 \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AC} \overrightarrow{AD} \overrightarrow{AD} \overrightarrow{AD} \overrightarrow{AD} \overrightarrow{AD} \overrightarrow{AD} \overrightarrow{AD}

مبر هنة (37): إذا كان الشعاع \overrightarrow{OA} بين \overrightarrow{OA} و \overrightarrow{OC} وان \overrightarrow{OD} هو الشعاع المعاكس للشعاع \overrightarrow{OA} فان \overrightarrow{OD} يقع بين \overrightarrow{OD} و \overrightarrow{OD} و \overrightarrow{OD} و \overrightarrow{OD}

الشكل الرباعي المحدب:

<u>تعاریف</u> :-

- 1) يقال عن ضلعين في شكل رباعي بأنهما متجاورين في نقطة واحدة والضلعين الغير متجاورين هما متقابلين.
 - 2) زاوية الشكل الرباعي هي الزاوية التي ضلعاها ضلعين متجاورين في الشكل الرباعي.
 - 3) يقال عن زاويتين في الشكل الرباعي بأنهما متجاورتين إذا اشتركتا بضلع من الإضلاع. وفي الشكل الرباعي الزاويتين غير المتجاورتين متقابلتين.
 - 4) يقال عن رأسي في الشكل رباعي بأنهما متجاورين إذا كانا رأسي لزاويتين متجاورتين والرأسين المتقابلين هما الرأسي الغير متجاورين .
 - 5) قطر الشكل الرباعي هو قطعة المستقيم الواصلة بين رأسين متقابلين.

تعريف : - يقال عن الشكل الرباعي بأنه محدب إذا كان لأي رأسين متجاورين في رؤوسه فأن الرؤوس الغير واقعة على الضلع المشترك تكون على جهة واحدة من خط ضلع هذين الرأسين .

تعريف: - الشكل الرباعي البسيط هو الذي لا يتقاطع فيه ضلعان و غير البسيط هو الذي يتقاطع فية ضلعان.

غير بسط

تعريف :- داخل رباعي الإضلاع المحدب (الشكل الرباعي محدب) هو تقاطع المجموعات التالية:

- D, C التي تحتوي AB جهة الخط
- D, A التي تحتوي BC جهة الخط
- ۳ جهة الخط CD التي تحتوي B, A
- ٤ جهة الخط AD التي تحتوي B, C

مبر هنة (***): داخل الشكل الرباعي محدب (رباعي الإضلاع المحدب) يكون مجموعة محدبة. (واجب)

التطابق والمقارنة:-

بديهيات التطابق بالنسبة لقطعة المستقيم:-

بما إن التطابق هو علاقة أولية ، يجب أن نقدم بديهيات لتعطينا خواص هذه العلاقة .

بديهية (1) (بناء(إنشاء) قطعة المستقيم):-

إذا كانت \overline{AB} قطعة مستقيم و C نقطة على خط مستقيم مثل m فأنهُ كل شعاع على الخط m ومصدرهُ النقطة C توجد نقطة واحدة فقط مثل D بحيث أن \overline{AB} .

C D → A ______B

بديهية (2) :- بالنسبة لقطع المستقيمات علاقة التطابق (🏻) هي علاقة تكافؤ .

نستنتج من هذه البديهية أن كل قطعة تطابق نفسها . وإذا كانت قطعة واحدة تطابق قطعة ثانية فإن الثانية تطابق الأولى وإذا كانت القطعة الاولى تطابق قطعة ثانية والقطعة الثانية تطابق قطعة ثالثة فإنه الأولى تطابق الثالثة.

A B F D F

بديهية (3): (إضافة (جمع) قطعة مستقيم): - إذا كان

[DEF] و [ABC] (a

 \overline{AC} \square \overline{DF} \overrightarrow{BC} \square \overline{EF} \overrightarrow{BC} \square \overline{AB} \square \overline{DE} (b)

A B C D E Q F

مبرهنة (38) :- (طرح القطع)

إذا كان [ABC] و DE] AB [DE فأنه AC] AB فأنه BC [EF

من بديهية (1) توجد نقطة مثل Q بحيث أن

 $Q \neq F \leftarrow \overline{EQ} \not\cong \overline{EF} \leftarrow \overline{BC} \square \overline{EQ}$

BC □ EQ و AB □ DE ···

... حسب بديهية (3) AC DQ DQ

 $Q = F \leftarrow DQ \square DF \leftarrow AC \square DF \cdots$

وهذا تناقض مع الفرض

.BC ☐ EF .·.

مبر هنة (39) :- إذا كانت AC DF و B نقطة بحيث أن [ABC] فأنه توجد نقطة مثل E بحيث أن ABC DF و B بحيث أن AB DE و DE الكالم الكالم

مقارنة قطع المستقيم:-

تعريف :- تكون قطعة المستقيم AB أقل من قطعة المستقيم CD إذا وفقط اذا وجدت نقطة مثل E بحيث أن [CED] وكذلك \overline{AB} .

مبر هنة (40): - إذا كانت CD, AB قطع مستقيم فأنه احد احتمالات التالية متحقق

 $\overline{AB} < \overline{CD} \lor \overline{CD} < \overline{AB} \lor \overline{AB} \square \overline{CD}$

```
مبر هنة (41) :- إذا كانت AB < CD و AB < CD فأنه
                    البرهان: - حسب تعريف (مقارنة القطع بما ان A-B < C-D بالفرض
                                  A-B\cong C-G و C-G-D فانه توجد نقطة
                                                          A-B\cong E-F بما ان
                                            E-F\cong C-G : حسب بدیهیة (2) متعدیة
                                         E-F< C-D حسب تعریف مقارنة القطع
                  مبر هنة (42) :- إذا كانت AB < CD و CD فأنه AB < EF
(واجب)
                  مبرهنة (43) :- إذا كانت AB < CD و CD < EF فأن AB < CD
```